Characterizing the structural features of RNA/RNA interactions of the F-plasmid FinOP fertility inhibition system.

نویسندگان

  • Michael J Gubbins
  • David C Arthur
  • Alexandru F Ghetu
  • J N Mark Glover
  • Laura S Frost
چکیده

F-like plasmid transfer is mediated by the FinOP fertility inhibition system. Expression of the F positive regulatory protein, TraJ, is controlled by the action of the antisense RNA, FinP, and the RNA-binding protein FinO. FinO binds to and protects FinP from degradation and promotes duplex formation between FinP and traJ mRNA, leading to repression of both traJ expression and conjugative F transfer. FinP antisense RNA secondary structure is composed of two stem-loops separated by a 4-base single-stranded spacer and flanked on each side by single-stranded tails. Here we show that disruption of the expected Watson-Crick base pairing between the loops of FinP stem-loop I and its cognate RNA binding partner, traJ mRNA stem-loop Ic, led to a moderate reduction in the rate of duplex formation in vitro. In vivo, alterations of the anti-ribosome binding site region in the loop of FinP stem-loop I reduced the ability of the mutant FinP to mediate fertility inhibition and to inhibit TraJ expression when expressed in trans at an elevated copy number. Alterations of intermolecular complementarity between the stems of these RNAs reduced the rate of duplex formation. Our results suggest that successful interaction between stem-loop I of FinP and stem-loop Ic of traJ mRNA requires that base pairing must proceed from an initial loop-loop interaction through the top portion of the stems for stable duplex formation to occur.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli

Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...

متن کامل

مهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19

 Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells.  Ai...

متن کامل

ANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO

The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...

متن کامل

Identification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation

There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...

متن کامل

Enhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase

Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 30  شماره 

صفحات  -

تاریخ انتشار 2003